

Datasheet V2.0

THE

WISENSING GENERAL DESCRIPTION

The WiseSensing sensor nodes provide a reliable, easy-to-mount and cost effective solution, which is designed for dynamic and static structural health monitoring of large structures. They measure:

- 3-axes accelerations
- polar angles inclinations, with a sensitivity of 0.02°;
- temperature, with a sensitivity of 0.5°C.

Two versions are available, one with and one without GPS synchronisation. Data communication can be performed by exploiting:

- Zigbee (gateway needed)
- LoRa
- Cellular (4G-LTE, NB-IOT, 3G)
- WiFi (coming soon, access point needed)

The data are then set to a remote server, to be available for analysis.

The main WiseSensing operation's parameters are reconfigurable from remote, such as:

- the range of measure and ODR for the accelerometer data acquisition;
- the axis/axes to acquire;
- the number of samples to acquire;
- the frequency of measurements during the day;
- the threshold and range for the shock accelerometer.
- The threshold for shock triggering a further acquisition
- The number of datapoints and the ODR for this acquisition.

WiseSensing operation does not rely on any battery replacement, being powered by solar and vibrational energy.

WiseSensing is IP67, ROHS 3 and UVrays resistant, so it is suitable to be installed outside without any additional protection.

WISENSENSING APPLICATION CASES

WiseSensing is designed in order to enable Structural Health Monitoring for large structures.

Its usage is recommended (but it is not limited) for monitoring:

- bridges, viaducts;
- <u>aerial pipelines;</u>
- <u>wind turbines, and in particular wind</u> <u>blades;</u>
- telecommunications antennas' poles;
- power grid poles.
- <u>Hystorically / artistically valuable or civil</u> <u>buildings</u>

In each of these cases, WiseSensing installation is easy and fast, and can be done either by screw-mounting (optionally exploiting a specifically designed mountingplate, that guarantees flatness and stability over rough sourfaces), or simply by gluing the sensor to the structure.

Based on the communication protocol, the installation of a Gateway can be needed to transfer the data on a dedicated server: the Gateway can be self- or externally powered.

TECHNICAL SPECIFICATIONS

Product reference			
WiseSensing -PWR-COM-MO			
PWR- power supply technology	COM- Communication WiFi technology		
VibPV: Non linear vibrational energy harvester transducer + Integrated solar panel (1W) + Li-Ion rechargeable battery (2.6Ah)	ZB : ZigBee radio		
PV: Integrated solar panel (1W) + Li-Ion rechargeable battery (2.6Ah)	LR : LoRa radio CELL : 4G/LTE- 3G-NB-IOT		
48V: external power supply of 48 Volts input.	WIFI: coming soon		

MO - Mounting Option SM - Screw Mounting Lid SMO - Screw Mounting Lid Orthogonal

Example n°1: WiseSensing-VibPV-ZB-SM, WiseSensing with vibrational harvester PV cell and rechargeable battery, ZigBee wifi module and screw mounting lid option **Example n°2: WiseSensing-PV-LR-SMO**, WiseSensing with PV cell and rechargeable battery, LoRa wifi module and screw mounting lid option

Environmental and Mechanical Features		
Casing	Waterproof casing Dimensions in mm (LxWxH): 120x120x50 mm Weight in grams : 500 g	
IP Rating	IP67	
Operating Temperature	-30 °C to +75 °C	
	CE Labelling Directive	
Norms & Radio Certifications	FCC/IC (North America)	
	ETSI (Europe)	
	ROHS - Directive 2002/95/EC	

Sensors specification		
Accelerometer for SHM		
Accelerometer Technology Low power MEMS technology		
Scalable measurement range	±2g / ±4g/ ±8g	
Measurement resolution	3.9 μg/digit @±2g , 7.8 μg/digit @±4g , 15.6 μg/digit @±8g	
Typical non-linearity	±0.1% FS	
Sensitivity change Vs temperature	±0.01%/°C (-40°C to +125°C)	
Zero-g level change vs temperature	±0.02 mg/°C (-40°C to +125°C)	
Typical zero-g level offset accuracy	±25 mg	
Noise spectral density @ BW 500Hz	25 μg/√Hz	
Accelerometer for Shock		
Accelerometer Technology	Low power MEMS technology	
Scalable measurement range	±2g / ±4g/ ±8g	
Measurement resolution	1 mg/digit @±2g , 2 mg/digit @±4g , 4 mg/digit @±8g	
Typical non-linearity	±0.5% FS	
Sensitivity change Vs temperature	±0.05%/°C (-40°C to +85°C)	
Zero-g level change vs temperature	±0.5 mg/°C (-40°C to +85°C)	
Typical zero-g level offset accuracy	±50 mg (Z axis) ±35 mg (X,Y axes)	
Noise spectral density @ BW 100Hz	920 µg/√Hz	
Temperature		
Measurement range	from -40°C to +125°C	
Accurancy	±0.5°C	

RF Specifications		
ZigBee [©]		
Wireless Protocol Stack	ZigBee [©]	
WSN Topology	Star	
Data rate	250 Kbits/s	
RF Characteristics	ISM 2.4GHz	
TX Power	+8 dBm	
Receiver Sensitivity	-103 dBm	
Maximum Radio Range	600m (Line of Sight) , 40m (Non Line of Sight)	
	LoRa™	
Wireless Protocol Stack	LoRa [®] Technology modulation	
Data rate	10937 bps	
RF Characteristics	863.000 MHz to 870.000 MHz	
TX Power	+14 dBm	
Receiver Sensitivity	-146 dBm	
Maximum Radio Range	10 km (Line of Sight), 3km (Non Line of Sight)	
Cellular		
Carrier and Technology	4G LTE CAT-M1/NB-IoT	
Supported Bands	FDD-LTE B1/B3/B5/B8/B20/B28	
RF Options		
Gateway ZigBee [©]	XGI-20CZ7-E00-W0 [WiFi + ETH0] XGI-20CZ7-EU7-W0 [WiFi + ETH0 + Cellular]	

Over-the-air configuration (OTAC) parameters		
ODR SHM Accelerometer	from 31.25 Hz up to 500 Hz	
Acquisition interval	from evrey hour up to every 8 hour	
Samples to acquire	from 1024 up to 32768	
Data transmission	1 axis , 2axes or 3 axes	
Shock detection threshold	from 1.1g up to 8g	
Post-shock acquisition threshold	from 1.1g up to 8g	
Samples for post-shock acquisition	from 1024 up to 32768	
ODR for post-shock acquisition	from 31.25 Hz up to 500 Hz	

Current consumption @ 3 V			
During data acquisition from 3mA up to 5mA			
During ZigBee [©] TX	30mA @ 8dBm		
During ZigBee [©] RX	10mA		
During LoRa [™] TX	45 mA @14dbm		
During LoRa [™] RX	10mA		
During Cellular TX	134 mA @23dBm		
During Cellular RX/Listening	18mA @3.3V		
During sleep mode (shock ON)	7μΑ		

Power supply		
Energy havesting	High precision voltage and current monitor of PV and Vibrational harvester	
Environmental battery charger	Integrated Lithium-ion battery solar and vibrational battery charger with high precision battery monitoring : • Overvoltage Protection, Overcurrent/Short-Circuit Protection, Undervoltage Protection • Battery Temperature monitoring	

INCLINOMETER TEST

A test was performed, mounting the sensor on a micrometric screw with minimum step of 0.02°.

The progressive inclination measured by the accelerometer was calculated, in degrees, by applying the following geometrical rules to the RMS accelerations on the three measurement axes:

$$\Theta = \frac{180^{\circ}}{\pi} \arcsin\left(\frac{a_{y}}{a_{RMS}}\right)$$
$$\Phi = \frac{180^{\circ}}{\pi} \arctan\left(\frac{a_{x}}{a_{z}}\right)$$

The results, when changing the inclination progressively with steps of 0.02° on Θ , are illustrated in Table 1 for the measured Θ and Φ acquiring 1024 samples with ODR = 500Hz, and when changing the inclination on Φ under the same conditions, in Table 2.

After repeating the test with 32768 samples, the sensitivity over the inclination angle was demonstrated to lower to **0.001 deg**.

This is due o the fact that a single measure of rms acceleration on one axis is given by computing the rms of the samples in one measurement for the same axis, and therefore the precision of a single rms measurement increases by increasing the number of samples.

Table 1: Sensitivity test for inclinometer. 1024 samples with ODR = 500Hz. Inclination on Θ

Experimental inclination on Θ	⊖ measured	Experimental inclination on Φ	Φ measured
$0.02^{\circ} \pm 0.005^{\circ}$	$0.023^{\circ} \pm 0.003^{\circ}$	$0.000 \circ \pm 0.005^{\circ}$	0.0027 ± 0.0015°
0.04 ± 0.005°	0.040 ± 0.003°	$0.000 \circ \pm 0.005^{\circ}$	0.0017 ± 0.0015°
0.06 ± 0.005°	0.064 ± 0.003°	$0.000 \circ \pm 0.005^{\circ}$	0.0005 ± 0.0015°
0.08 ± 0.005°	0.085 ± 0.003°	0.000 ° ± 0.005°	0.0016 ± 0.0015°

Table 1: Sensitivity test for inclinometer. 1024 samples with ODR = 500Hz. Inclination on Φ

Experimental inclination on Θ	Θ measured	Experimental inclination on Φ	Φ measured
$0.000^{\circ} \pm 0.005^{\circ}$	-0.003° ± 0.003°	$0.060^{\circ} \pm 0.005^{\circ}$	$0.063 \pm 0.002^{\circ}$
0.000 ± 0.005°	-0.002 ± 0.003°	$0.080^{\circ} \pm 0.005^{\circ}$	0.084 ± 0.002°
0.000 ± 0.005°	-0.001 ± 0.003°	0.10 ° ± 0.005°	0.107 ± 0.002°
0.000 ± 0.005°	-0.007 ± 0.003°	0.12 ° ± 0.005°	0.129 ± 0.002°

Optionally, and under a careful evaluation from Wisepower's technical team, customisation of the product can be discussed.

For any additional information, please contact us through the contacts provided in our webiste **www.wisepower.it**, or call the number +39 075 584 7210.

Wisepower technical office is in **Viale Zeffirino Faina 4, 06123, Perugia (PG).**