

Multi-sensor monitoring system for structural health

WS-SHM

Datasheet

Energy Harvesting Technology

Wisepower s.r.l. Via F. Innamorati, 15 06123 Perugia (PQ) P.IVA 01364960557 info@wisepower.it

WISENSING GENERAL DESCRIPTION

The WiseSensing sensor nodes provide a reliable, easy-to-mount and cost effective solution, which is designed for dynamic and static structural health monitoring of large structures. They measure:

- 3-axes accelerations
- polar angles inclinations, with a sensitivity of 0.02°;
- temperature, with a sensitivity of 0.5°C.

Two versions are available, one with and one without GPS synchronisation.

Data communication can be performed by exploiting:

- Zigbee (gateway needed)
- LoRa
- Cellular (4G-LTE, NB-IOT, 3G)
- WiFi (coming soon, access point needed)

The data are then set to a remote server, to be available for analysis.

The main WiseSensing operation's parameters are reconfigurable from remote, such as:

- the range of measure and ODR for the accelerometer data acquisition;
- the axis/axes to acquire;
- the number of samples to acquire;
- the frequency of measurements during the day;
- the threshold and range for the shock accelerometer.
- The threshold for shock triggering a further acquisition
- The number of datapoints and the ODR

for this acquisition.

WiseSensing operation does not rely on any battery replacement, being powered by solar and vibrational energy.

WiseSensing is IP67, ROHS 3 and UV-rays resistant, so it is suitable to be installed outside without any additional protection.

WISENSENSING APPLICATION CASES

WiseSensing is designed in order to enable Structural Health Monitoring for large structures.

Its usage is recommended (but it is not limited) for monitoring:

- <u>bridges, viaducts;</u>
- <u>aerial pipelines;</u>
- <u>wind turbines, and in particular wind</u> <u>blades;</u>
- telecommunications antennas' poles;
- power grid poles.
- <u>Hystorically / artistically valuable or</u> <u>civilbuildings</u>

In each of these cases, WiseSensing installation is easy and fast, and can be done either by screw-mounting (optionally exploiting a specifically designed mountingplate, that guarantees flatness and stability over rough sourfaces), or simply by gluing the sensor to the structure.

Based on the communication protocol, the installation of a Gateway can be needed to transfer the data on a dedicated server: the Gateway can be self- or externally powered.

TECHNICAL SPECIFICATIONS

Product reference			
WiseSensing -PWR-COM-MO			
PWR- power supply technology	COM- Communication WiFi technology		
VibPV: Non linear vibrational energy harvester transducer + Integrated solar panel (1W) + Li- lon rechargeable battery (2.6Ah)	ZB : ZigBee radio		
PV: Integrated solar panel (1W) + Li-Ion rechargeable battery (2.6Ah)	CELL : 4G/LTE- 3G-NB-IOT		
48V: external power supply of 48 Volts input.	WIFI: 802.11/b/g/n, TCP/IP		

MO - Mounting Option SM - Screw Mounting Lid SMO - Screw Mounting Lid Orthogonal

Example n°1: WiseSensing-VibPV-ZB-SM, WiseSensing with vibrational harvester PV cell andrechargeable battery, ZigBee wifi module and screw mounting lid option Example n°2: WiseSensing-PV-LR-SMO, WiseSensing with PV cell and rechargeable battery, LoRawifi module and screw mounting lid option

Environmental and Mechanical Features			
Casing	Waterproof casing		
	Weight in grams : 500 g		
IP Rating	IP67		
Operating Temperature	-30 °C to +75 °C		
Norms & Radio Certifications	CE Labelling Directive		
	FCC/IC (North America)		
	ETSI (Europe)		
	ROHS – Directive 2002/95/EC		

Sensors specification			
Accelerometer for SHM			
Accelerometer Technology	Low power MEMS technology		
Scalable measurement range	±2g / ±4g/ ±8g		
Measurement resolution	3.9 μg/digit @±2g , 7.8 μg/digit @±4g , 15.6 μg/digit @±8g		
Typical non-linearity	±0.1% FS		
Sensitivity change Vs temperature	±0.01%/°C (-40°C to +125°C)		
Zero-g level change vs temperature	±0.02 mg/°C (-40°C to +125°C)		
Typical zero-g level o ff set accuracy	±25 mg		
Noise spectral density @ BW 500Hz	25 μg/√Hz		
Accelerometer for Shock			
Accelerometer Technology	Low power MEMS technology		
Scalable measurement range	±2g / ±4g/ ±8g		
Measurement resolution	1 mg/digit @±2g, 2 mg/digit @±4g, 4 mg/digit @±8g		
Typical non-linearity	±0.5% FS		
Sensitivity change Vs temperature	±0.05%/°C (-40°C to +85°C)		
Zero-g level change vs temperature	±0.5 mg/°C (-40°C to +85°C)		
Typical zero-g level offset accuracy	±50 mg (Z axis) ±35 mg (X, Y axes)		
Noise spectral density @ BW 100Hz	920 µg/√Hz		
	Temperature		
Measurement range	from -40°C to +125°C		
Accuracy	±0.5°C		

RF Specifications			
ZigBee [©]			
Wireless Protocol Stack	ZigBee [©]		
WSN Topology	Star		
Data rate	250 Kbits/s		
RF Characteristics	ISM 2.4GHz		
TX Power +8 dBm			
Receiver Sensitivity -103 dBm			
Maximum Radio Range	600m (Line of Sight) , 40m (Non Line of Sight)		
LoRa [™]			
Wireless Protocol Stack	LoRa [®] Technology modulation		
Data rate	10937 bps		
RF Characteristics	863.000 MHz to 870.000 MHz		
TX Power	+14 dBm		
Receiver Sensitivity	-146 dBm		
Maximum Radio Range	10 km (Line of Sight), 3km (Non Line of Sight)		
	Cellular		
Carrier and Technology	4G LTE CAT-M1/NB-IoT		
Supported Bands	FDD-LTE B1/B3/B5/B8/B20/B28		
Wi – Fi			
Wireless Protocols Stack	IEEE 802.11b/g/n, TCP/IP		
Data Rate	From 11 to 54 Mbps		
RF Characteristics	From 2.412 to 2.484 GHz		

TX Power	From 16 to13 dBm		
Receiver Sensitivity	From -90 dBm to -67dBm		
RF Options			
Gateway ZigBee©	XGI-20CZ7-E00-W0 [WiFi + ETH0] XGI-20CZ7-EU7-W0 [WiFi + ETH0 + Cellular]		

GPS (optional)		
Acquisition time	 <1s (hot start, Outdoor) <30s (hot start, Indoor) <15s (max 32s) Open sky, cold start 	
Protocol Support	NMEA 0183 (GGA, GLL, GSA, GSV, RMC, VTG)	
Sync Time Accuracy	· <100ns (Typical) · <800ns (Max)	
	· 1ms (not synced)	

Over-the-air configuration (OTAC) parameters		
ODR SHM Accelerometer	from 31.25 Hz up to 500 Hz	
Acquisition interval	from every hour up to every 8 hours	
Samples to acquire	from 1024 up to 32768	
Data transmission	1 axis, 2axes or 3 axes	
Shock detection threshold	from 1.1g up to 8g	
Post-shock acquisition threshold	from 1.1g up to 8g	
Samples for post-shock acquisition	from 1024 up to 32768	
ODR for post-shock acquisition	from 31.25 Hz up to 500 Hz	

Current consumption @ 3 V			
During data acquisition	from 3mA up to 5mA		
During ZigBee [©] TX	30mA @ 8dBm		
During ZigBee [©] RX	10mA		
During LoRa [™] TX	45 mA @14dbm		
During LoRa [™] RX	10mA		
During Cellular TX	134 mA @23dBm		
During Cellular RX/Listening	18mA @3.3V		
During sleep mode (shock ON)	70A		

Power supply		
Energy havesting	High precision voltage and current monitor of PV and Vibrational harvester	
Environmental battery charger	Integrated Lithium-ion battery solar and vibrational battery charger with high precision battery monitoring: · Overvoltage Protection, Overcurrent/Short-Circuit Protection, Undervoltage Protection · Battery Temperature monitoring	

3rd party components		
Zigbee Communication	Industrial Gateway Digi (or equivalent) 4G/Ethernet	
	Connection + power supply	
WiFi Communication	 Router 4G + power supply 	
	 WiFi Repeater for wide ranges 	
Self-powering kits for gateways	 Pole mounting kit for 80W solar panel (at least) 	
	 Waterproof cabinet 	
	Rechargeable battery	
	Solar charge regulator	
	 Power supply converter 	

Wisepower s.r.l. Via F. Innamorati, 15 06123 Perugia (PQ) P.IVA 01364960557 info@wisepower.it

INCLINOMETER TEST

A test was performed, mounting the sensor on a micrometric screw with minimum stepof 0.02°. The progressive inclination measured by theaccelerometer was calculated, in degrees,by applying the following geometrical rulesto the RMS accelerations on the three measurement axes:

The results, when changing the inclination progressively with steps of 0.02° θ , areillustrated in Table 1 for the measured and acquiring 1024 samples with ODR = 500Hz,and when changing the inclination ϕ under the same conditions, in Table 2.

After repeating the test with 32768 samples, the sensitivity over the inclination angle was demonstrated to lower to 0.001 deg.

This is due to the fact that a single measure of rms acceleration on one axis is given by computing the rms of the samples in one measurement for the same axis, and therefore the precision of a single rms measurement increases by increasing thenumber of samples.

Experimental Inclination θ	Measured	Experimental inclination φ	Measured
0.02° ± 0.005°	0.023° ± 0.003°	0.000 ° ± 0.005°	0.0027 ± 0.0015°
0.04 ± 0.005°	0.040 ± 0.003°	0.000 ° ± 0.005°	0.0017 ± 0.0015°
0.06 ± 0.005°	0.064 ± 0.003°	0.000 ° ± 0.005°	0.0005 ± 0.0015°
0.08 ± 0.005°	0.085 ± 0.003°	0.000 ° ± 0.005°	0.0016 ± 0.0015°

Table 1: Sensitivity test for inclinometer. 1024 samples with ODR = 500Hz. Inclination θ

Experimental Inclination θ	Measured	Experimental inclination φ	Measured
0.000° ± 0.005°	-0.003° ± 0.003°	0.060° ± 0.005°	0.063 ± 0.002°
0.000 ± 0.005°	-0.002 ± 0.003°	0.080° ± 0.005°	0.084 ± 0.002°
0.000 ± 0.005°	-0.001 ± 0.003°	0.10 ° ± 0.005°	0.107 ± 0.002°
0.000 ± 0.005°	-0.007 ± 0.003°	0.12 ° ± 0.005°	0.129 ± 0.002°

Table 1: Sensitivity test for inclinometer. 1024 samples with ODR = 500Hz. Inclination ϕ

Wisepower s.r.l. Via F. Innamorati, 15 06123 Perugia (PG) P.IVA 01364960557 info@wisepower.it

Optionally, and under a careful evaluation from Wisepower's technical team, customisation of theproduct can be discussed.

For any additional information, please contact us at info@wisepower.it or call the number +39 075 584 7210.

Wisepower technical office is in Viale Zeffirino Faina 4, 06123, Perugia (PG).