WISEP WER

WS-SHM

Multi sensore di monitoraggio per la salute delle strutture

Datasheet

Wisepower s.r.l. Via F. Innamorati, 15 06123 Perugia (PG) P.IVA 01364960557 info@wisepower.it

DESCRIZIONE GENERALE

I sensori WS-SHM forniscono un' affidabile, facile da montare e conveniente soluzione, progettata per il monitoraggio della salute strutturale statica e dinamica di grande strutture. Misurano:

- · Accelerazioni dei 3 assi:
- Inclinazioni degli angoli polari con sensibilità di 0,002°;
- temperatura, con una sensibilità di 0,5°C.

Sono disponibili due versioni, una con e uno senza sincronizzazione GPS.

La comunicazione dei dati può essere eseguita sfruttando:

- Zigbee
- LoRa
- Cellulare (4G-LTE, NB-IOT, 3G)
- WiFi

I dati vengono quindi impostati su un server remoto, resi disponibili per l'analisi.

I parametri operativi principali di WS-SHM sono riconfigurabili da remoto, ad esempio:

- il range di misura e ODR per l'acquisizione dei dati accelerometrici;
- l'asse/gli assi acquisire;
- · il numero di campioni acquisire;
- la frequenza delle misure effettuate durante il giorno;
- la soglia ed il range per le accelerazioni di shock:
- la seconda soglia di shock per innescare un'acquisizione più lunga;
- il numero di campioni e l'ODR per l'acquisizione.

L'operatività di WS-SHM non necessita della sostituzione della batteria, essendo alimentata da energia solare e vibrazionale.

WS-SHM è IP67, ROHS 3 e resistente ai raggi UV; in questo modo si adatta ad essere installato anche all'esterno senza alcuna aggiunta di protezione.

CASI APPLICATIVI

WS-SHM è progettato per il monitoraggio della salute di grande strutture.

Il suo utilizzo è consigliato (ma non limitato) per il monitoraggio di:

- ponti, viadotti;
- · condutture aeree:
- turbine eoliche;
- · torri di telecomunicazioni;
- gasdotti;
- strutture o monumenti storici/artistici.

In ognuno di questi casi, l'installazione di WS-SHM è facile e veloce; può essere fatta con montaggio a vite (facoltativamente si sfruttare un'apposita piastra montaggio che garantisce planarità ρ stabilità su superfici ruvide) semplicemente mediante incollaggio del sensore alla struttura.

In base al protocollo di comunicazione, può essere necessaria l'installazione di un gateway per il trasferimento di dati su un server dedicato. Quest'ultimo può essere cablato o auto-alimentato.

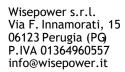
SPECIFICHE TECNICHE

Riferimenti del prodotto		
WS-SHM - PWR - COM- MO		
PWR- tecnologia di alimentazione	COM-Tecnologia di comunicazione Wi-Fi	
VibPV: Energy Harvester vibrazionale non lineare + Pannello solare integrato (1W) + Li-ion Batteria ricaricabile (2,6 Ah)	ZB : ZigBee Radio	
PV: Pannello solare integrato (1W) + Li-ion Batteria ricaricabile (2,6 Ah)	CELL: 4G/LTE- 3G-NB-IOT	
48V: Alimentazione esterna di 48 V in input.	WIFI: 802.11/b/g/n, TCP/IP	

MO - Opzione montaggio SM - Coperchio con montaggio a vite

SMO - Coperchio con montaggio a vite ortogonale

Esempio n°1: WS-SHM-VibPV-ZB-SM, WS-SHM con harvester vibrazionale, pannello fotovoltaico, batteria ricaricabile, modulo ZigBee e coperchio con montaggio a vite.


Esempio n°2: WS-SHM-PV-LR-SMO, WS-SHM con pannello fotovoltaico e batteria ricaricabile, modulo LoRa coperchio con montaggio a vite.

Caratteristiche Ambientali e Meccaniche		
Involucro	Impermeabile Dimensioni in mm (LxWxH): 120x120x50 mm	
Valutazione IP	Peso In grammi: 500 g IP67	
Temperatura Operativa	-30 °C A +75 °C	
Norme & Certificazioni Radio	Etichettatura Direttiva CE	
	FCC/CI (Nord America)	
	ETSI (Europa)	
	ROHS - Direttiva 2002/95/CE	

Specifiche sensori			
Accelerometro per SHM			
Tecnologia dell'accelerometro	Tecnologia MEMS a bassa energia		
Range di misura	±2 g / ±4g / ±8 g		
Risoluzione	3.9 μg/digit @±2g, 7.8 μg/digit @±4g, 15.6 μg/digit @±8g		
Non-linearità tipica	±0,1% FS		
Variazione di sensibilità vs temperatura	±0,01%/°C (-40°C a +125°C)		
Variazione del livello Zero-g vs temperatura	±0,02 mg/°C (-40°C a +125°C)		
Precisione offset Zero-g	±25 mg		
Rumore densità spettrale @ BW 500Hz	25 μg/√Hz		
Acceler	rometro per Shock		
Tecnologia dell'accelerometro	Tecnologia MEMS a bassa energia		
Range di misura	±2 g / ±4g / ±8 g		
Risoluzione	1 mg/digit @±2g, 2 mg/digit @±4g, 4 mg/digit @±8g		
Non-linearità tipica	±0,5% FS		
Variazione di sensibilità vs temperatura	±0,05%/°C (-40°C a +85°C)		
Variazione del livello Zero-g vs temperatura	±0,5 mg/°C (-40°C a +85°C)		
Precisione offset Zero-g	±50 mg (asse Z), ±35 mg (assi X, Y)		
Rumore spettrale densità @ BW 100Hz	920 μg/√Hz		
Temperatura			
Range di misura	da -40°C a +125°C		
Precisione	±0,5°C		

Specifiche RF			
ZigBee [©]			
Protocollo dello Stack	ZigBee [©]		
Topologia WSN	Star		
Rate dei dati	250 Kbit/s		
Caratteristiche RF	ISM 2,4 GHz		
Energia in TX	+8 dBm		
Sensibilità del Ricevitore	-103 dBm		
Range Massimo	600 m (Linea d'aria), 40 m (Non in Linea d'aria)		
LoRa ™			
Protocollo dello Stack	LoRa® -Tecnologia di modulazione		
Topologia WSN	10937 bps		
Rate dei dati	863.000 Mhz A 870.000 Mhz		
Caratteristiche RF	+14 dBm		
Energia in TX	-146 dBm		
Sensibilità del Ricevitore	10 km (linea d'aria), 3 km (non in linea d'aria)		
Cellulare			
Tecnologia	4G LTE CAT-M1/NB-IoT		
Bande Supportate	FDD-LTE B1/B3/B5/B8/B20/B28		
Wi - Fi			
Protocollo dello Stack	IEEE 802.11b/g/n, TCP/IP		
Velocità dati	da 11 a 54 Mbps		
Caratteristiche RF	da 2.412 a 2.484 GHz		

Energia in TX	da 16 a 13 dBm		
Sensibilità del Ricevitore	da -90 dBm a -67dBm		
Opzioni RF			
ortale ZigBee© XGI-20CZ7-E00-W0 [Wifi + ETH0] XGI-20CZ7-EU7-W0 [Wifi + ETH0 + Cellulare]			

GPS (opzionale)		
Tempo di acquisizione . <1s (hot start, Outdoor) . <30s (hot start, Indorr) . <15s (max 32s) Open sky, Cold start		
Supporto del protocollo	NMEA 0183 (GGA, GLL, GSA, GSV, RMC, VTG)	
Precisione di sincronizzazione	· <100ns (Tipico) · <800ns (Massimo)	
	· 1ms (non sincronizzato)	

Parametri di configurazione over-the-air (OTAC)		
ODR SHM Accelerometro	da 31.25 Hz a 500 Hz	
Intervallo d'acquisizione	da OGNI ora ad ogni 8 ore	
Campioni A acquisire	da 1024 a 32768	
Trasmissione dei dati	1, 2 o 3 assi (X,Y,Z)	
Rilevamento soglia di shock	da 1,1 g a 8 g	
Soglia di acquisizione post-shock	da 1,1 g a 8 g	
Campioni da acquisire per il post-shock	da 1024 a 32768	
ODR per il post-shock	da 31.25 Hz a 500 Hz	

Consumo @ 3 v		
Durante acquisizione dati	da 3mA fino a 5mA	
Durante ZigBee ® TX	30mA @8dBm	
Durante ZigBee ® RX	10mA	
Durante LoRa [™] TX	45 mA @14dbm	
Durante LoRa ™ RX	10mA	
Durante Cellulare TX	134 mA @23dBm	
Durante Cellulare RX/Ascolto	18mA @3.3V	
Durante modalità sleep (shock ON)	7 uA	

Alimentazione		
Energy harvesting	Controllo di precisione di voltaggio e corrente fornita dal pannello e dall'energy harvester.	
Ricarica della batteria da fonti ambientali	Batteria Li-ion ricaricabile tramite fonte solare e vibrazionale con controllo di precisione: • Protezione da OverVoltage, OverCurrent, corto circuiti e Undervoltage; • Monitoraggio della temperatura della batteria.	

Componenti aggiuntivi		
Comunicazione Zigbee	Gateway industriale Digi (o equivalente) 4G/Ethernet	
	Connessione + alimentazione.	
Comunicazione Wifi	· Router 4G + alimentazione;	
	· Ripetitore WiFi per ampia copertura.	
Kit per il Gateway auto-alimentato	 Palo di montaggio e kit per pannello solare 80W (almeno) Box Impermeabile Batteria ricaricabile Regolatore di carica 	

TEST INCLINOMETRICI

È stato eseguito un test, montando il sensore su una vite micrometrica con passo di 0,02°. L'inclinazione progressiva misurata dall'accelerometro era calcolata in gradi, a p p l i c a n d o l e s eguenti regole geometriche all' RMS delle accelerazioni misurate sui 3 assi:

I risultati in tabella 1 mostrano le misure al variare di Φ con Φ fisso, mentre nella tabella 2 le misure sono state effettuate facendo variare Φ con Φ fisso. La misurazione prevede 1024 campioni con ODR = 500 Hz.

Dopo aver ripetuto il test con 32768 campioni, la sensibilità rispetto all'angolo di inclinazione si riduce a 0,001 gradi.

Ciò è dovuto al fatto che un'unica misura di RMS su un asse è data calcolando l'RMS dei campioni in una misurazione per lo stesso asse; perciò, la precisione di una singola misura di rms aumenta al crescente del numero di campioni.

Tabella 1: Sensibilità test per inclinometro. 1024 campioni con ODR = 500Hz. Inclinazione Φ

Inclinazione sperimentale SU	misurato	Inclinazione sperimentale SU	misurato
0,02° ± 0,005°	0,023° ± 0,003°	0.000 ° ± 0,005°	0,0027 ± 0,0015°
0.04 ± 0,005°	0,040 ± 0,003°	0.000 ° ± 0,005°	0,0017 ± 0,0015°
0.06 ± 0,005°	0,064 ± 0,003°	0.000° ± 0,005°	0,0005 ± 0,0015°
0.08 ± 0,005°	0,085 ± 0,003°	0.000° ± 0,005°	0.0016 ± 0,0015°

Tabella 2: Sensibilità test per inclinometro. 1024 campioni con ODR = 500Hz. Inclinazione φ

Inclinazione sperimentale SU	misurato	Inclinazione sperimentale SU	misurato
0.000° ± 0,005°	-0,003° ± 0,003°	0,060° ± 0,005°	0,063 ± 0,002°
0.000 ± 0,005°	-0,002 ± 0,003°	0,080° ± 0,005°	0,084 ± 0,002°
0.000 ± 0,005°	-0,001 ± 0,003°	0.10 ° ± 0,005°	0.107 ± 0,002°
0.000 ± 0,005°	-0,007 ± 0,003°	0.12 ° ± 0,005°	0,129 ± 0,002°

Wisepower s.r.l. Via F. Innamorati, 15 06123 Perugia (PG) P.IVA 01364960557 info@wisepower.it

Facoltativamente, e sotto attenta valutazione da parte del team tecnico di Wisepower, la personalizzazione del prodotto può essere discussa.

Per qualsiasi informazione aggiuntiva consultare il sito www.wisepower.it

L'ufficio tecnico di Wisepower è in Viale Zefferino Faina 4, 06123, Perugia (PG).